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Introduction 

 Positionality is a reflex strategy that identifies a researcher’s bias (McMillan, 

2010).  As a teacher of mathematics in western Canada, I want to begin by identifying my 

bias.  My philosophy in mathematics education is to develop students’ mathematical 

thinking.  Too often I lose this focus and concentrate on transmitting algorithms and 

procedures for students to follow.  In completing a project for my masters, I wanted to 

explore principles and practices in mathematics instruction that create a rich environment 

for students to develop their mathematical thinking. As such, it is hoped that a synthesis 

of math instruction and student learning, as well as incorporating mandates from 

curricular frameworks, will enable myself and other teachers to recognize emerging 

principles for mathematics instruction that correlate with improved student 

understanding.  

As each learner and classroom is unique, it is not possible to prescribe a specific 

list of best practices in mathematics instruction.  However, if common elements can be 

identified across research, they can then be adapted appropriately by a teacher 

professional as instructional frameworks in his or her classroom.  It is my desire to 

demonstrate how these common elements in mathematics research can be applied to 

several curricular outcomes in order for myself and other teachers to see the potential 

benefits in adapting these principles and practices for the classroom.  
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Question 

What are the common themes between mathematics education research in North 

America and curricular frameworks of the National Council of Teachers of Mathematics 

(NCTM) and the Western and Northern Canadian Protocol (WNCP)?  Following this, 

how can these common themes be applied to the teaching and learning of mathematics in 

secondary classrooms? 

In order to answer this question, we will begin with an examination of research 

regarding the teaching and learning of mathematics in the context of North America.    

We will then analyze the frameworks supported by the NCTM and the WNCP.  From 

these three groups, common elements concerning mathematics instruction and learning 

will be determined, cross-examined and condensed. Once these common themes are 

identified they will be applied to several curricular outcomes in the WNCP Grades 10-12 

Common Curricular Framework as illustrative examples.      

Literature Review 

Math Education in North America 

In conducting the literature review, thirty-two academic articles were compared 

from ProQuest, ERIC, and JSTOR databases.  The review was conducted between 

October 2009 and March 2010.  Common search terms for the review were “mathematics 

education,” “research studies,” “trends,” and “issues.”  In reading multiple articles from a 

variety of academic journals, it was surprising to find recurrent themes.  The following 

discussion relates to these recurrent themes.    
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The most common theme in the articles reviewed was the need to place less 

emphasis on procedural math (Baroody and Hume, 1991; Cavanagh, 2008; Cobb and 

Yackel, 1996; Dreyfus and Eisenberg, 1986; Garnier et al, 2005; Lampert, Penelope, and 

Putnam, 1990; Myers, 2007; Sinclair, 2009).  None of the other articles reviewed 

suggested an increase of importance on teaching and following algorithms in class.  Yet 

this is the typical emphasis in the North American mathematics classroom.   

Garnier et al (2005) describe the all too common classroom in North America. 

The teacher begins the class by asking the students if they have any questions from the 

homework in the previous class, requiring the teacher to write solutions to a few 

questions on the board.  The teacher then proceeds with the new lesson for the day.  The 

topic is introduced as notes on the board.  The teacher shows how to solve computational 

questions related to the topic and often provides a step-by-step procedure for the students 

to follow.  Following the teacher’s examples, the students are given questions to solve 

from the board while the teacher walks around and checks their work.  The procedure to 

solve the questions is placed on the board and the ensuing questions from the textbook 

are assigned.  The teacher sits down and students are instructed to work on the 

assignment independently in their own desks.  This scenario is significantly different than 

the principles offered by the researchers in the following section.    

Mathematics education in North America does not “add up.”  Garnier, Gallimore, 

Givvin, Hollingsowrth, Hiebert, Jacobs, Manaster, et al. (2005) summarize U.S. eighth-

grade mathematics teaching as “frequent review of relatively unchallenging, procedurally 

oriented mathematics during lessons that are unnecessarily fragmented” (p. 125).  In an 

interesting comparison, nations that scored higher than the U.S. in the Third International 
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Mathematics and Science Study had a greater percentage of questions as application 

problems (Garnier et al, 2005).  Japan, for example, averaged 74% of all problems as 

application questions compared to 34% in the United States (Garnier et al, 2005).  The 

benefit of this is that application problems place the question in context, allowing 

students to construct meaning. 

Hand, Nasir, and Taylor (2008) conducted a study among students that were not 

successful in solving problems in a mathematics classroom.  They found that when given 

an applicable context of interest, such as solving basketball average questions, students 

were able to utilize alternative strategies to solve the questions.  The methods they used 

were not taught in class, but they relied on intuitive understanding and exploration to 

solve the questions.  Hand, Nasir, and Taylor (2008) acknowledge that success of 

contextual math over rote memorization and procedural math has long been known.  

They quote the National Education Association in 1899 as describing the benefits of 

allowing students to construct their own models rather than by presented with 

prefabricated questions.  It is interesting to note that a philosophy of teaching in 

mathematics education proclaimed over one hundred years ago is still struggling to take 

effect.  Something needs to be done before the same mistake is made again for the next 

one hundred years.   

 Placing questions in context also helps students correlate problem solving in the 

real world says Schoenfeld (1989).  There is a fundamental difference between problem 

solving in a typical North American classroom and the real world.  One approach takes 

more time.  Schoenfeld (1989) laments that North American educators have created a 

culture of students, through common homework problems and test problems that give a 
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concrete result in one or two minutes, that are not willing to persevere in problem 

solving.  Any problem taking more than twelve minutes, Schoenfeld states, will have 

most students believing that it is impossible to solve.  As many adults can attest, most 

problems in the real world can hardly be even understood in the first twelve minutes. 

The implications of these findings suggest the importance of contextualizing 

problems.  The temptation is to think that more questions or concepts is better, but 

covering more questions or teaching more concepts has not shown to correlate with 

students learning more mathematics (Romberg and Carpenter, 1986 as cited in Confrey, 

1990).  

Cauley and Seyfarth (1995) also advocate for students learning mathematics in 

context.  They argue for “engaging problematic situations” that can be approached from a 

variety of ways.  Real problems in life do not present themselves as strictly algebraic or 

as only to be solved by applications of rates.  Problems presented in the classroom should 

be similar in nature to problems encountered in the real world.  In solving real-world 

problems, guidance and suggestions may be given, but only as necessary to keep the 

student engaged.  Allowing students to explore problems in context from multiple 

approaches also places less emphasis on procedure. 

 Baroody and Hume (1991) and Meyer (1997), suggest several principles for 

effective math instruction.  Meyer (1997) recommends that instruction should start with 

experientially real activities from which students can abstract concepts, create and model 

their understanding, interact with others through reasoning, and be intertwined with other 

strands rather than being independent.  Baroody and Hume (1991) suggest a focus on 

understanding over rote memorization, encouraging active, purposeful learning, fostering 
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informal knowledge, linking instruction to informal knowledge, and encouraging 

reflection and discussion.  These suggestions have three common elements: building on 

background knowledge, reasoning, and communicating through discussion.   

First, Baroody and Hume (1991) and Meyer (1997) emphasize the importance of 

drawing on student’s background knowledge.  Although a student’s mathematical 

intuition may be hidden by years of procedural emphasis (Sinclair, 2009), teachers must 

allow students to explore rich problems using existing knowledge. Folk and Van de 

Walle (2004) also argue that knowledge is built upon a learner’s construction.   

Second, this background knowledge can then be built upon as students infer and 

conjecture possible patterns and solutions through reasoning.  Rather than suppressing 

intuition and exploration by detailing solutions on the board before students are able to 

engage in a problem; math instruction must build on what students already know 

(Dreyfus and Eisenberg, 1986) in leading to more abstract and complex concepts.  

Third, reflection and discussion is essential.  In addition to Meyer (1997) and 

Baroody and Hume (1991), Anthony and Walshaw (2008) also stress the importance of 

dialogue and communication among students in math instruction.  Teachers should not 

assume that this happens naturally between students.  Students need to be guided in 

thinking together, asking challenging questions, and checking the plausibility of differing 

solutions through reasoning.  Cobb and Yackel (1996) extend this idea further by 

insisting that guided instruction needs to lead students to appreciate the beauty of math, 

or the aesthetic, through understanding difference, efficiency, elegance, and connections.   

Effective mathematics instruction is not limited to connections of contextual 

problems within mathematics.  Mathematics can and should be applied to other 
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disciplines such as English (Seo, 2009), art (Grzegorczyk and Stylianou, 2005), music 

(Rogers, 2004), and science (Mumford, 2006).  An example from each discipline will be 

given to help illustrate the point.   

Seo (2009) argues that connecting math and English can be beneficial for grade 

nine and ten students who have difficulties understanding grammatical structure in the 

writing process.  By using the concept of an equation, Seo encourages students to form 

paragraphs similar to the way that they would solve an equation.  One begins with a topic 

sentence and each subsequent sentence relates back to the initial sentence.  Seeing 

paragraph construction in pictures and symbols, Seo (2009) argues, can help students 

improve their writing. 

Art has many connections to mathematics, particularly in the area of geometry.  

Dutch artist, M. C. Escher created numerous drawings that show tessellations, reflections, 

dilations, translations, and rotations – all components of transformation geometry.  In the 

same context, Grzegorczyk and Stylianou (2005), suggest connecting geometry and art 

through integration of symmetry.   

Music is mathematical. Rogers (2004) shows how musical acoustics can be 

integrated in mathematics and science.  Octaves, scales, semi-tones, frequencies, 

measures, and acoustics can be expressed numerically.  These values can then be added, 

subtracted, multiplied or divided to create similar, yet unique forms of music.  

Mary Somerville, a prominent female mathematician in the nineteenth century, is 

quoted as saying that “All of math and science is interconnected” (Reimer and Reimer, 

2005).  Mumford (2006) would agree.  He advocates for math, integrated into the 

sciences, to be hailed as a relevant way to understand the physical world.  This cannot be 
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done without connecting math to science.  Several of the examples he includes are the 

measurement of motion, state variables of a wave, cell biology, the significance of 

graphing, and the necessity for average citizens to understand the p-value in statistical 

analysis.   

English, art, music, and science are only a few examples of the possible 

connections of math to other subject areas.  In the teaching and learning of mathematics 

in the secondary classroom, connecting math to other disciplines should be a planned 

priority.   

In summary, the current emphasis in North American math education on 

procedures (Baroody and Hume, 1991; Cavanagh, 2008; Cobb and Yackel, 1996; 

Dreyfus and Eisenberg, 1986; Garnier et al, 2005; Lampert, Penelope, and Putnam, 1990; 

Myers, 2007; Sinclair, 2009) needs to be replaced with students solving problems 

(Schoenfield, 1989) in context (Cauley and Seyfarth, 1995; Hand, Nasir and Taylor, 

2008) by constructing knowledge (Folk & Van de Walle, 2004; Meyer, 1997) through 

reasoning (Barody & Hume, 1991; Meyer, 1997), communicating (Anthony and 

Walshaw, 2008; Baroody and Hume, 1991) and making connections to other subject 

areas and the world (Mumford, 2006). 

National Council of Teachers of Mathematics 

The National Council of Teachers of Mathematics (NCTM) was founded in 1920 

in the United States and still exists today as a public voice in supporting teachers to 

provide the highest quality mathematics education for all students (NCTM, 2010).  Since 

1980, the NCTM has called for radical changes in mathematics education (Higgins, 

1997).  Publications from the NCTM have outlined a shift from procedural computations 
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to developing students’ mathematical thinking (Graham & Fennell, 2001).  For example, 

Principles and Standards (2000) states that the main focus of math instruction is student 

understanding.  This is then demonstrated through the themes of deemphasizing 

procedural math, allowing students to construct their own knowledge, encouraging 

students to infer and conjecture through reasoning, encouraging communication through 

reflective thought and discussion, and providing learning situations in which students are 

able to make connections.  

 In 1989 when Curriculum and Evaluation was published, a precursor to 

Principles and Standards, the NCTM received criticism for directing math instruction 

away from computational knowledge to deeper understanding through problem solving 

(NCTM, 2000).  Despite the criticism, the NCTM still maintains this focus stating in 

2000 that learning with understanding should be the goal of mathematical instruction.  

Learning from understanding comes from students “actively building new knowledge 

from experience and prior knowledge” (NCTM, 2000, p. 11).  As autonomous learners, 

students construct meaning when given appropriate tasks in context.  When students do 

not rely on the teacher as the transmitter of knowledge but rather become independent 

learners their depth and breadth of learning is extended (NCTM, 2000).  Constructing 

knowledge then is closely connected with learning with understanding. 

 In learning with understanding, it is not enough for students to construct their own 

mathematical reality.  Students need to infer, justify claims, and prove conjectures 

(NCTM, 2000) to test their constructs.  Reflective questions such as “Does this work in 

situations other than this context?  Can I think of one example that makes this statement 

false?  Is there a pattern developing that I have seen before?” are questions that test a 
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students’ ideas.  Rather than asking a teacher to judge the validity of an idea, students 

must become proficient in testing their own ideas with their previous knowledge.  They 

also can benefit from reflecting and discussing with their peers through communication. 

  Communication is listed as one of the standards in Principles and Standards. 

Four goals of instructional programming related to communication are expressed in this  

standard.  First, communication is important in order for students to be able to 

conceptualize their own mathematical thinking.  They need to be able to sort and frame 

their ideas in order to be able to share their thinking.  Second, in order for the listener to 

make sense of their ideas, students must be able to communicate effectively.  Effective 

communication includes explaining concepts in a clear and logical manner.  Third, 

communication affords students the opportunity to critique one another’s thinking.  

Multiple viewpoints can help a student see the validity or inconsistency of a construct.  

Fourth, communication forces students to develop mathematical terminology.  In order to 

express concepts accurately, mathematical language needs to be utilized and mutually 

understood.  Therefore, communication is crucial to developing student understanding in 

mathematics. 

Another important aspect of developing student understanding in mathematics is 

connections.  In Principles and Standards (2000) three domains of connections are 

outlined.  The first domain encourages students to recognize and use connections within 

mathematics.  Students can prompt themselves by repeatedly asking themselves how the 

current concept relates to concepts they have examined before.  Relating geometry to 

algebra or relating ratio to fractions and decimals are examples within this domain.  In the 

second domain students need to consider how individual concepts combine to create a 
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coherent whole.  Students must build upon what they already know in order to connect 

concepts.  For example, a student could determine the surface area of a cylindrical juice 

can by examining the individual faces.  Although a student may not have calculated the 

surface area of a cylinder before, the student could use prior knowledge to add together 

the areas of two circles and the rectangle.  The third domain applies to contexts outside of 

mathematics.  Mathematics is not an isolated subject of study.  As was illustrated earlier, 

rich connections can be made to other subject areas such as English, art, music, and 

science.   

 In reviewing the directives from the NCTM in order to develop students’ 

understanding, five themes emerge.  First, less emphasis should be placed on following 

procedures and more emphasis placed on problem solving.  Second, students need to 

build upon prior knowledge and experiences in constructing meaning in mathematics.  

Third, opportunities to infer, justify, and prove should be provided to students.  Fourth, 

communication in organizing concepts, sharing effectively, evaluating other’s ideas, and 

developing mathematical language is necessary.  Last, making connections within 

mathematics and outside of mathematics is important for providing a context.    

Western and Northern Canadian Protocol 

 The Western and Northern Canadian Protocol (WNCP) is a curricular framework 

that is shared by the four western provinces and three northern territories in Canada 

(WNCP, 2008).  It began as the Western Canadian Protocol in 1993 to encourage 

collaboration in primary and secondary education. Within mathematics, this collaboration 

was not fully actualized until 2008 when, supported by the ministries of education in each 

jurisdiction, the Common Curriculum Framework for Grades 10-12 Mathematics: 
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Western and Northern Canadian Protocol was published (WNCP, 2008).  In the 

introduction and conceptual framework of the publication, the purpose, beliefs, goals, and 

mathematical processes of the WNCP are outlined.  It is within this content that 

principles for the teaching and learning of mathematics will be examined. 

 Similar to the mandate of the NCTM, the WNCP states, “learning through 

problem solving should be the focus of mathematics at all grade levels” (2008, p. 8).  In 

describing authentic problem solving, not all types of questions are considered to be 

equally valid.  For instance, when students are given ways in which to solve the problem 

it is considered practice, not problem solving (WNCP, 2008).  The emphasis is on 

students accessing prior knowledge and using it in new contexts rather than following 

procedures.  Suppose students were shown how to solve trigonometric ratios in right-

angle triangles.  If a word problem were then presented to students in which they had to 

solve for a missing side length or angle, this would not be considered problem solving, 

but rather practice.  Instead, an example of a problem that allows for multiple methods of 

solving could ask students to calculate the height of a tree situated on the school grounds. 

Students could work in small groups and use a variety of methods such as similar 

triangles, trigonometric ratios or ratios of shadows in order to calculate the height of the 

tree.  In this situation, students would need to build upon their previous knowledge in 

order to problem solve. 

 Related to problem solving, building upon previous knowledge, expectations, and 

experiences is important in developing mathematical understanding (WNCP, 2008).  The 

WNCP provides three guidelines for students constructing meaning.  First, mathematical 

experiences should proceed from simple to complex and concrete to abstract.  Second, a 
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wide variety of manipulatives, tools, visuals, contexts, and instructional styles should be 

available to students as each individual student tries to construct meaning of a new 

concept.  Third, discussion between students is necessary for students to build 

connections between concrete and symbolic representations of mathematics.  Relevant 

discussion enables students to test their newly formed ideas with others.      

Testing ideas through inference, analysis, and justification allows students to 

develop mathematical reasoning (WNCP, 2008).  Students should be continually 

challenged to question why they believe something is true.  Responsibility is taken from 

the teacher and placed on the student in deciding if a conjecture is valid.  This also fosters 

an environment in which students can become autonomous learners, connecting 

mathematical reasoning to contexts within and outside of mathematics.  

Making connections is related to the previous three concepts of problem solving, 

constructing knowledge, and reasoning.  As much as possible, problems should be 

connected to meaningful contexts (WNCP, 2008).  For “through connections, students 

begin to view mathematics as useful and relevant” (WNCP, 2008, p.7).  Reasoning is also 

linked to connections in that students need to relate previous concepts that they have 

learned in mathematics to the new ones that they are constructing.  Making connections 

helps students make sense of mathematics as a whole and helps them see ways in which 

mathematics is integrated into other subject areas and everyday life (WNCP, 2008).  

Communication is a critical aspect of learning, doing and understanding 

mathematics (WNCP, 2008).  In order to express ideas, attitudes, and beliefs about 

mathematics, communication through language is necessary.  Communication promotes 
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the development of mathematical language through students making connections between 

simple and complex, concrete and abstract mathematical ideas (WNCP, 2008).   

In summary, there are five major principles and practices that come forward from 

the WNCP Common Curricular Framework.  The five themes are focusing on problem 

solving, providing opportunities for students to construct knowledge, challenging 

students to reason, encouraging students to make connections, and fostering 

communication between students.     

Synthesis 

 The first part of my research question asked about the common themes in 

mathematics education research and curricular frameworks of the NCTM and WNCP.  

These have been identified in each of the three areas and will be cross-examined.  

Following this cross-examination, the second question, how these themes can be applied 

in the secondary classroom, will be outlined using curricular outcomes. 

 Five themes emerge from the NCTM, WNCP, and mathematics education 

research.  First, there should be less of an emphasis on procedural math and more of an 

emphasis on integrated problem solving.  As stated earlier, this was the most often 

reoccurring theme in the research. Learning through problem solving is also described by 

the NCTM as “an integral part of all mathematics learning” (NCTM, 2000, p. 51) and by 

the WNCP as the “focus of mathematics at all grade levels” (WNCP, 2008, p.8). 

Second, building upon students’ prior knowledge and experiences in order for 

students to construct new learnings was emphasized in the research (Barody and Hume, 

1991; Folk & Van de Walle, 2004; Meyer, 1997) and mentioned as a predictor of success 
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in the WNCP (2008, p. 2) and as “essential” in the NCTM (2000, p.10).  Constructing 

knowledge is the basis for creating meaning to mathematical concepts.  

Third and fourth, reasoning through justifying and proving was also stressed by 

each of the three groups as was the fourth common theme of communication.  Building 

on inferences to create deeper meaning (Dreufus and Eisenberg, 1986) was identified in 

the research and paralleled as “essential to understanding” (NCTM, 2000, p. 55) and 

necessary in order to make sense of mathematics (WNCP, 2005). Communication brings 

meaning to ideas (NCTM, 2000) through a variety of forms to create connections 

(WNCP, 2008).  Anthony and Walshaw (2008), Baroody and Hume (1991), and Meyer 

(1997) also emphasized communication as essential in developing students’ mathematical 

thinking.  

Fifth, the reviewed research articles, the NCTM, and WNCP accentuated the 

necessity of making connections both within mathematics and outside of mathematics.  

Connections were seen as “powerful in developing understanding” (WNCP, 2000, p. 7) 

and capable of producing “deeper and longer lasting understanding” (NCTM, 2000, p. 

63).  Examples of deeper understanding through connections to other subject areas and 

within mathematics were also demonstrated (Mumford, 2006; Rogers, 2004).      

In summary, in order to develop students’ mathematical thinking and 

understanding, students should learn through problem solving by building on previous 

knowledge and experiences, justifying the reasonableness of their constructions through 

discussion and make connections to contexts within and outside of mathematics.   
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Applications 

 The five common themes identified earlier will be applied to three topics within 

the WNCP Grades 10-12 Common Curricular Framework.  I chose the WNCP 

framework because I am a teacher situated in western Canada.  The actual examples 

chosen are only important to illustrate the applications of the common themes.  Each 

teacher needs to study his or her jurisdiction’s curricular mandates as well as the context 

of the learners to determine appropriate applications.   The three topics I have chosen are 

magic squares, sine and cosine law, and measurement.  These topics are a part of the 

WNCP framework and are listed by their corresponding curricular outcomes in the 

proceeding section. 

Magic Squares  

 Magic squares can be found in the WNCP Curricular Framework for Grades 10-12 

in the Foundations 30 pathway.  Foundations 30 is a grade twelve course designed for 

students entering arts and sciences in post-secondary education.  Under the general 

outcome of logical reasoning, specific outcome number one states: 

 It is expected that students will analyze puzzles and games that involve numerical  

 and logical reasoning, using problem-solving strategies. (It is intended that this  

 outcome be integrated throughout the course by using games and puzzles such as  

 chess, Sudoku, Nim, logic puzzles, magic squares, Kakuro and cribbage.)  

 (WNCP, 2008, p. 69). 

To begin, there is nothing “magic” about magic squares. This topic can be taught in a 

traditional manner with students following procedures or it can be taught in ways 

reflecting the previous research examined and the NCTM and WNCP frameworks.  The 
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topic is not important as compared to the way in which it is taught.  In Appendix A, I 

have included a student activity guide with questions and solutions on magic squares.  As 

I discuss this topic, it may be beneficial to reference the complete lesson plan in 

Appendix A.  

We begin with a problem situated in a context. In 1514 Albrecht Dürer created a 

wood engraving entitled “Melecolia.”  In the upper right-hand corner of the artwork there 

is an arrangement of numbers in a square with 4 rows and 4 columns.   

“Albrecht Dürer’s Melecolia” 
 

 
 
(Credit: Metropolitan Museum of Art, 2010) 
 
 
 
 
 
 
 
 

16 3 2 13 

5 10 11 8 

9 6 7 12 

4 15 14 1 
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 A teacher could begin by asking students in groups to write out their observations 

about the numbers.  A set number of observations is not mandated, students are simply 

asked to make observations about the arrangement of numbers.  Most students are 

probably familiar with magic squares and may notice that the sum of each row, column, 

and diagonal is 34. In groups, students should be given time to explore further properties 

of the square.  After an appropriate amount of time is allowed, groups of students should 

be encouraged to share with one another concerning observations they have made. It is 

quite likely that some groups will notice things that others did not.  Further, in order to 

communicate, students will have had to use terminology to express their findings. For 

example, students may have created a phrase to describe the constant of the magic square.  

They may not have used that exact word but in making observations and explaining them 

to other students they would have communicated the idea.  Communication can occur by 

providing an opportunity for students to share their observations about mathematics. 

 If students are having difficulty making observations beyond the constant of the 

square, the teacher can help the students.  However, the teacher does not help the students 

by giving them the answer, rather the teacher can act as a facilitator in prompting the 

students.  In this example, a teacher may ask, “Do you notice this sum anywhere else in 

the square?”  If a student is not equipped to ask reflective questions of him or herself a 

teacher can help develop that type of mathematical reflection by asking the student. 

The teacher could also ask, “How do you think Albrecht Dürer made this 

arrangement?”  Students may notice the resemblance of Dürer’s square to a square in 

which the numbers from 1 through 16 are written in sequential order.  Building on what 
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they already know about transformations, students may be able to determine which 

numbers have been translated to create the magic square.   

“4 by 4 square in sequential order translated to Dürer’s square” 
 

 
 
 
 
 

 
 
 
 
 

 
 
 Another possible prompting question for students could be “Do you see anywhere 

in the square where Albrecht Dürer may have left his signature?” There are several 

implications of this type of discussion.  First, students may see that not everything in 

mathematics is certain.  There is no way to know with certainty that the 15 and 14 refers 

to the year and the numbers 4 and 1 refer to his initials “D” and “A” based on their 

position in the alphabet.  Second, it helps students make connections outside of 

mathematics.  Students may notice the umlaut in the artist’s last name and question his 

country of origin.  If the class ended at this point, I speculate that some students would 

continue investigating this question.  A discussion may arise questioning if the German 

language has the same alphabet as the English language.  If it did not, the conjecture that 

the 4 and 1 refer to his initials would most likely not be true.  If however, the letters of 

the alphabet and the order is the same as the English alphabet, at least for the first four 

letters, it is likely that the conjecture is true. This question allows students to build and 

connect knowledge about foreign language to mathematics. 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

16 3 2 13 

5 10 11 8 

9 6 7 12 

4 15 14 1 
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 With a rich task, even a simple observation can be extended to develop 

mathematical thinking through reasoning.  As mentioned earlier concerning Dürer’s 4 by 

4 square, most students will notice that each row, column, and diagonal has a sum of 34.  

The question “why” can often challenge students to think about the mathematics behind a 

concept rather than merely accepting it because that is what they were told.  Constructing 

knowledge is rooted in students making sense of mathematical concepts (Folk & Van de 

Walle, 2004) instead of memorizing and practicing procedures.  To extend the 

observation of the constant as 34, a teacher could ask, “Why is 34 the constant?”  A quick 

response may follow based on the sum of each row, column, and diagonal.   To this a 

teacher could respond, “What is the constant of a 3 by 3 magic square?”  One student 

may try and generate a 3 by 3 square in order to answer the question and another student 

may recognize that the sum of the numbers in a magic square divided by the size of the 

square is the constant.  There are multiple methods and reasons for students to come to 

this conclusion.  These methods can be shared and tested among classmates.  Their 

conjecture can be tested further by asking them, “What is the constant of a 5 by 5 magic 

square? A 6 by 6 magic square? A 7 by 7 magic square? A N by N magic square?”  The 

goal is to move from the concrete to the abstract.  By starting with something that is 

tangible and can be seen, such as 3 by 3 or 4 by 4 magic square, students can then build 

on what they know and construct meaning for an abstract concept such as the constant of 

a N by N magic square.   

 Students could also be asked in groups to generate all possible 3 by 3 magic 

squares.  Once again, students would have to use language in order to describe the 

different possible magic squares.  They would also have to reason in showing that there 
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were a certain number of solutions and no more.  It is likely that students will disagree as 

to the number of solutions, creating the possibility for engagement and dialogue. In 

particular, this question is excellent in helping students see the need to be able to clearly 

explain and present their solutions.  As there are 7 rotations and reflections of the one 

unique magic square, students are likely to be challenged in representing all of them.  The 

students in the class should decide what counts as a unique solution.  Discussion may be 

connected to rotations and reflections or it may be related to an algebraic or visual 

representation.  

 There are still more ways for students to develop their mathematical thinking 

through magic squares.  Students could be given a problem that they are not able to solve. 

A teacher could start by asking students in groups to create a 7 by 7 magic square.  Most 

students would attempt this task for several minutes and then become frustrated by the 

level of difficulty required of them.  However, it is important to note that prior to this 

question students have not been given examples and step-by-step procedures in creating a 

7 by 7 magic square. They will need to build on their understanding of previously learned 

concepts such as average, weighted mean, ratio, and patterning in order to solve the 

question.  

 Teachers must help facilitate student learning.  If a teacher gave the answer 

directly to the students and then had the students replicate the process, very little learning 

would occur.  Instead the role of the teacher is to help students develop mathematical 

thinking.  Using the previous example, a teacher could help students by questioning them.  

A teacher might ask, “Have you seen a problem like this before? Can you break it down 

to a simpler problem?”  Some groups of students might look at the 3 by 3 magic square 
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and look for patterns in it.  Others might try and use the constant value to determine 

columns and rows.  After a while, it is likely that most students would not be progressing 

in being able to generate a 7 by 7 magic square.  At this point, the teacher could give each 

group of students a completed 5 by 5 magic square with the number 1 in the middle 

position of the top row. 

“Completed 3 by 3 and 5 by 5 magic square with 1 in the top middle position” 

 

8 1 6 

3 5 7 

4 9 2 

 
 
 
 
 
Students could be encouraged to look for patterns between their completed 3 by 3 square 

and the 5 by 5 square.  They would need to create a conjecture and then test it.  Most 

students will not think that they are capable of ever creating a 7 by 7 magic square.  

However, by giving them an opportunity to recognize a pattern and apply their 

understanding of constants, it is possible that many students will be able to generate a 7 

by 7 magic square.  When students arrive at a correct solution when they did not think 

they could ever solve question, it helps build confidence.  If students are successful in 

determining the pattern from the magic squares above, they can be challenged to discover 

other generating patterns.  They can then reflect, discuss, and justify the situations in 

which their pattern works.  Rich problems allow students of all levels to access the 

question and also provide stimulating extensions for others.   

17 24 1 8 15 

23 5 7 14 16 

4 6 13 20 22 

10 12 19 21 3 

11 18 25 2 9 
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 One other such extension is the creation of a 9 by 9 magic square using a Sudoku 

grid.  Instead of thinking of the square as only 9 rows by 9 columns, students can be 

challenged to create a magic square in which each 3 by 3 square is a magic square and the 

sum of any three 3 by 3 squares in a row, column, or diagonal is also equal.  

“Completed 9 by 9 square with Sudoku grid” 
 

71 64 69 8 1 6 53 46 51 

66 68 70 3 5 7 48 50 52 

67 72 65 4 9 2 49 54 47 

26 19 24 44 37 42 62 55 60 

21 23 25 39 41 43 57 59 61 

22 27 20 40 45 38 58 63 56 

35 28 33 80 73 78 17 10 15 

30 32 34 75 77 79 12 14 16 

31 36 29 76 81 74 13 18 11 

 
A complex question such as this requires students to build upon their previous 

knowledge and apply it in a new situation.  If students had been taught a procedure in 

creating standard magic squares, it is likely that many would find it difficult to complete 

this task as the definition of a magic square has been altered.  An important discussion 

during this task and after is for students to consider why this arrangement works.  It is 

probable that students will make natural connections from the arrangement of this magic 

square to Sudoku.  Making connections, as argued earlier is an important aspect of 

learning mathematics.  
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Choosing appropriate tasks to meet curricular outcomes is critical.  Tasks need to 

be problem based and allow students to construct understanding through reasoning, 

communicating, and connecting.  In Principles and Standards (2000), the NCTM 

describes four benefits of choosing appropriate tasks.  First, students gain confidence by 

tackling difficult problems (NCTM, 2000).  At the beginning of the lesson, most students 

would not think that they are capable of generating a 7 by 7 magic square.  However, by 

helping students break down the question into a simpler question and applying what they 

know, it is possible for students to be successful at the task.  There is a sense of 

satisfaction, possibly an appeal to the aesthetic, when a student is near completing a large 

magic square and he or she begins checking the solution by adding the rows, columns, 

and diagonals.  This sense of satisfaction is not as great if the student had been told what 

to do and had followed the instructions.  

Second, students are eager to find things out on their own when presented with an 

appropriate task (NCTM, 2000).  When wonder is invoked in students, they become 

intrinsically motivated.  They are not concerned whether this information is going to be 

on a test or when they will use this in real-life, they are instead engaged in the learning 

and desiring to learn for themselves.  From Albrecht Dürer’s engraving, some students 

may wonder if his initials correspond to the numbers in the bottom row. Others may be 

curious if it possible to generate a 6 by 6 or 8 by 8 magic square by using the translations 

in Dürer’s 4 by 4 magic square.  Still others may wonder if it is possible to prove the 

number of all possible 4 by 4 magic squares.  

Third, appropriate tasks afford students flexibility in exploring mathematical ideas 

and trying alternative solution paths (NCTM, 2000).  Students are not limited to 
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following a set procedure multiple times.  Instead, rich mathematical tasks allow students 

to think critically about how to solve a problem.  Alternative solutions paths can also lead 

to student led discussions.  In this environment, the students, rather than the teacher, 

direct the discussion and refute or demonstrate the validity of possible alternative 

solutions.  

Fourth and last, when appropriate tasks are chosen for students, they are willing to 

persevere in completing them (NCTM, 2000).  Perseverance develops from intrinsic 

motivation and confidence and is necessary to solve most problems.  However, this is not 

the message most students receive from homework assignments.  As discussed before, 

Schoenfeld (1989) found that because of categorized practice questions that condition 

students to quick answers, most students believe that any problem that takes longer than 

twelve minutes to solve is impossible.  Appropriate tasks demonstrate to students that 

solving problems takes time and perseverance is necessary in order to solve them, similar 

to solving problems in the real world.  

The five identified common themes have been applied to the teaching and 

learning of a curricular outcome, namely developing logical reasoning through magic 

squares.  It is hoped that through this example, other teachers will be able to apply the 

concepts to other curricular outcomes.  In order to further see possibilities and benefits of 

teaching from this philosophy, two more examples will be given.    
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Sine and Cosine Law 

Solving problems using the sine and cosine law is an outcome that is found in all 

three of the pathways described in the WNCP.  In Foundations 20, a grade eleven course, 

outcome three in geometry expects students will “solve problems that involve the cosine 

law and the sine law, including the ambiguous case.” (WNCP, 2008, p. 59).  Also, under 

trigonometry in Pre-calculus 20, another grade eleven course, outcome number three 

states that “it is expected students will solve problems that involve the cosine law and the 

sine law, including the ambiguous case.” (WNCP, 2008, p. 81)  Further, in Apprentice 

and Workplace Mathematics 30, a grade twelve course, outcome number one in geometry 

expects students will “solve problems by using the sine law and cosine law, excluding the 

ambiguous case.”  (WNCP, 2008, p. 40). 

In Foundations 20 and Pre-calculus 20 the achievement indicators expect that 

students not only solve problems using the sine and cosine law, but that they are also able 

to generate the sine law and cosine law (WNCP, 2008).  Accordingly, a problem is 

presented at the beginning of the lesson that students will not be able to solve using 

trigonometric ratios in a right-angle triangle.  The lesson enables students to derive the 

law of sines based on their previous knowledge of trigonometric ratios. The students then 

use this law to solve the original problem.  A similar lesson framework with a different 

problem is also presented for the law of cosines. 

To begin the lesson a problem is presented in context.  Two friends are 

contemplating canoeing from one of their cabins to a beach across the lake. They want to 

know the shortest distance to canoe.  For a full description of the question and lesson plan 

see Appendix B. 
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“Diagram of Canoeing Question” 
                           Beach 
                      
 
 
 
 
 
 
             
 
 
 
 
                   
              Tamara’s          112°     

Cabin      
              70°                       97° 

                          1.8 km                         
                Dominique’s Cabin  
                 58°   
 
 The question can be considered a problem, as students have not already been 

given ways to solve it (WNCP, 2008).  Students may recognize the similarities between 

this problem and solving trigonometric ratios.  However, most students will not know 

how to use trigonometric ratios in triangles without a 90° angle.  This can lead to an 

interesting discussion between students if it is possible to still use sine, cosine, and 

tangent in non-right angled triangles.  As the teacher, it is important to encourage this 

type of conversation rather than give a direct answer or move too quickly to the next 

concept.  A teacher can validate students’ mathematical thinking by providing time for 

students to question and wonder.   

 In discussing the use of trigonometric ratios in oblique (non-right angle) triangles 

students may have tried to test their thoughts by using examples and counter-examples.  

Often students begin at the concrete level, using specific measurements for side lengths 
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and angles.  At this point, a teacher could ask students, “How is it possible to show a 

relationship for a general oblique triangle?”  Prior to grade eleven math, it is likely that 

students have had experience in proving congruency for general triangles.  The 

suggestion may be made to draw a general oblique triangle.  An example is shown below.  

“General Oblique Triangle ABC” 

                 A 
 
                   c 
 
 
         B      b                       
 
 
 
   a 
 
              C 
  

Different groups of students will draw different sizes of oblique triangles and 

label the sides with different letters.  This will only help students see that this relationship 

works for all oblique triangles and not just special cases.  The teacher can ask guiding 

questions of the students as necessary.  Starting at the concrete the teacher can ask 

students to consider everything they know about triangles and finding missing lengths 

and angles.  Students should know certain concepts such as given two angles in a triangle 

the third can be calculated, if one side length and one angle is known in a right-angle 

triangle the other missing lengths and angles can be found, and given the length of two 

sides of a right-angle triangle the third side can be calculated.  Students need to connect 

the present problem to their previous understanding. One group of students may 

recognize that a general oblique triangle can be divided into two smaller right-angle 

triangles by drawing the altitude from one of the bases. 
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“General Oblique Triangle ABC with altitude at A”        

  
             A 
 
 
      c 
 
     h 
B           b  
 
           
          a  
 
                         C 

 

Most students will recognize the potential to use sine, cosine, and tangent in the two 

smaller triangles but will not know which relationships to use. Without directly stating 

the relationship the teacher can ask the students guiding questions such as,  “If we want 

to relate the altitude to two different angles, which trigonometric ratios should be used?”  

By continuing this process in a similar manner, students can determine the law of sines.  

The full list of guiding questions is outlined in the lesson plan in Appendix B.  Students 

can then use this relationship to solve the original problem. 

 A traditional method of showing students a relationship, giving some examples 

and then having the students practice individually does little to develop students’ 

mathematical thinking (Garnier et al, 2005).  Students need to construct their own 

meaning from connecting relationships.  With the law of sines, students’ understanding 

would not be greatly increased if the teacher introduced the topic, gave some examples 

and then the students practiced using it on triangles.  Problems that students are not 

immediately able to solve can help students see the need to learn new concepts.   
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 Once students have derived the law of sines, several extensions and connections 

can be made.  In solving the canoeing problem, students will most likely have used the 

sine law to relate two known angles and one known side in order to find the missing side 

length.  Students may either wonder or can be asked, “Given various side lengths and 

angles of a triangle, when is it possible to use the law of sines to determine the missing 

lengths and/or angles?”  Students will need to connect their previous learning of 

congruent triangles in order to determine the applicable cases.   Work should be done in 

small groups so that students can test and verify each other’s solutions.  In order to test 

their solutions, students could give two side lengths and one angle for a triangle that has 

zero, one or two solutions.   

 The law of cosines can also be derived in a similar manner.  A problem in which 

students are not able to use trigonometric ratios of right-angle triangle of the law of sines 

is presented.  It is best if the students have already derived the law of sines as the law of 

cosines requires additional steps and is slightly more difficult.  The problem for the law 

of cosines is situated in golf in which two golfers are trying to determine which ball is 

closest to the pin after their initial drives.  

“Tiger and Mike go Golfing” 

 
Pin 
 

    a     150 yard marker 
    152 yards           C  (Tiger’s ball) 
B                84o 

      21 yards 
          c      b  
               
        A  (Mike’s ball) 
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Once again, the complete problem and sequence of questions in deriving the law of 

cosines is included in Appendix B.  There are two extension questions of interest.  First, 

students can be asked to figure out the applicable situations for using the law of cosines.  

Students may ponder or be asked by a teacher, “What is the minimum information in 

terms of side lengths and angles in order to use the law of cosines?”  Second, there is an 

interesting case of the law of cosines when the included angle is 90°.  For example, the 

golfing problem asks students to find the side length c if the angle at Tiger’s ball was 90° 

instead of 84°.  Students may notice that the value of Cos 90° is 0 and therefore the law 

of cosines is simplified to the Pythagorean theorem as seen below. 

c2 = a2 + b2 – 2ab ⋅ cos C 
c2 = 1522 + 212 – 2(152)(21)(cos 90º) 
c2 = 23545 – 0 
c = 153.44 yards 
  

The Pythagorean theorem is really a special case of the law of cosines.  This is another 

relationship that can be seen from using problems that require constructing, reasoning, 

communicating, and connecting. 

 Folk and Van de Walle (2004) give seven benefits of using relations when 

developing understanding.  First, it is intrinsically rewarding.  Folk and Van de Walle 

(2004) contend that most people, especially children, enjoy learning.  People enjoy 

making sense of new information and making connections.  However, rote learning is not 

enjoyable for most as evidenced by numerous extrinsic motivators such as tests, rewards, 

or external personal pressure.   

The second, third, and fourth benefits listed are closely connected.  Relational 

learning enhances memory, it requires less for students to remember, and fourth, it helps 
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with learning new concepts and procedures.   Memory recall is not limited to isolated 

facts.  If a student is not able to remember a concept, relational learning allows the 

student to reason through similar concepts with the possibility of connecting to the 

desired concept.  In North American mathematics classrooms, reviewing of concepts 

accounts for almost one-half of the instructional time (Garnier et al, 2005).  Instead of 

constant review of procedures and facts, relational learning allows students more time to 

study concepts in depth by relating them to concepts already learned, requiring less 

memorization for the student. 

Improving problem solving is the fifth benefit of relational learning as described 

by Folk and Van de Walle (2004).  When a student’s learning is interconnected 

transferability between concepts is increased (Schoenfeld, 1992).  Problems require 

students to access prior knowledge in order to form a solution.  If a student is able to 

relate concepts within mathematics, rather than having each concept stored fragmentally, 

their ability to access combinations of this stored understanding is increased. 

Sixth, relational learning is also beneficial because it is self-generative.  Similar to 

improving problem-solving abilities, relational learning fosters the creation of new ideas 

and inventions.  Students are more likely to demonstrate perseverance when confronted 

with a problem and also create new ways in which to solve problems.  

  Last, relational learning improves attitudes and beliefs.  When students begin to 

feel that they understand mathematics and can solve problems, they develop a positive 

attitude toward mathematics.  Mathematics is no longer seen as only accessible to the 

elite but rather understandable by everyday people.  Recalling rote procedures may 

produce fear and anxiety (Folk & Van de Walle, 2004), but interconnected understanding 
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is likely to produce a positive attitude toward the learning of mathematics as confidence 

correlates positively with achievement (Schoenfeld, 1989).     

In review, relational learning is beneficial because it is intrinsically rewarding, it 

enhances memory, there is less to remember, it facilitates learning new concepts and 

procedures, it improves problem-solving abilities, it is self-generative, and it improves 

attitudes and beliefs.  The law of sines and law of cosines were presented as an example 

as teaching in this way.  One last topic, measurement, will be discussed in applying 

teaching and learning that is problem-solving based, allowing students to construct, 

reason, communicate, and connect their understandings.  

Measurement 

 Linear, surface area, and volume measurement outcomes are included in two of the 

WNCP pathways.  In the grade eleven course of Apprentice and Workplace Mathematics 

20, under measurement, outcomes one and two state: 

Solve problems that involve SI and imperial units in surface area 

measurements and verify the solutions [and] solve problems that involve  

 SI and imperial units in volume and capacity measurements.  

 (WNCP, 2008, p. 30)  

Also, in Foundations 10, three of the outcomes under measurement are applicable.  It is 

expected that students will: 

• Solve problems that involve linear measurement, using SI and imperial  

 unit of measure, estimation strategies, [and] measurement strategies.  

• Solve problems, using SI and imperial units, that involve the surface  

 area and volume of 3-D objects, including right cones, right cylinders,  

 right prisms, right pyramids, [and] spheres.  

• Develop and apply the primary trigonometric ratios (sine, cosine,  
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 tangent) to  solve problems that involve right triangles.  

 (WNCP, 2008, pp. 47-48). 

 One possible way to meet these outcomes in a problem-solving context is to have 

students participate in a math trail activity.  In the absence of categorized practice 

questions, students are forced to think critically about how to solve questions.  As for the 

context, any school or building will have plenty of examples of objects or areas for 

students to measure.  The following examples are taken from math trails that I have 

developed for the University of Saskatchewan and the University of Regina.  For 

measuring tools, I give a similar length banana to each group of students because bananas 

do not have incremental marks and it requires students to convert between bananas in 

linear, squared, and cubed units.  The five common themes will be applied to this activity 

by examining several of the tasks required of the students.  For a complete description of 

this activity and questions, please refer to Appendix C.  

 Real-life situational problems help students construct meaning by building on 

previous knowledge. One of the questions asks students to calculate the volume of a glass 

elevator.  The elevator is an irregular hexagonal prism.  Students will most likely not 

have been taught the formula for finding the volume of such an object, but in standing in 

the elevator and attempting to measure its dimensions, they may notice that the hexagon 

can be divided into a rectangle and a trapezoid.  They will have to build upon prior 

knowledge and experience to solve the problem.  
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“Diagram of elevator’s base” 

     

  

 

 
 

Students should be able to determine the area of the rectangle and may be able to 

calculate the area of the trapezoid, recognizing that the area of the trapezoid is the same 

as a rectangle with a length that is equal to the average of the parallel sides.  Students 

could also further compartmentalize the trapezoid as a rectangle and two triangles.  One 

concept is easier to remember than several.  Students who have previously made the 

connection that the volume of a prism is equal to the area of the base multiplied by the 

height instead of memorizing separate formulas for cylindrical, rectangular, triangular or 

pentagonal prisms are likely to realize that the volume of the elevator can be calculated if 

the area of the base is known.  By adding together the areas of the trapezoid and rectangle 

and then multiplying by the height, the volume can be found.      

Another task in which students need to build upon prior knowledge and connect 

concepts is in finding the volume of a regular hexagonal prism.  The prism is surrounded 

with glass that extends to the ceiling so a simple measurement across the prism is not 

possible.  In this context, the restrictions placed on the problem are not fictitiously 

imported but exist due to a physical obstacle.  This allows students to see the need for 

creativity and multiple approaches in problem solving in real-life.  Students may 

recognize that the hexagon can be divided into two equal trapezoids or six congruent 

equilateral triangles.  By finding the area of one of the triangles, students could multiply 
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by six to find the total area of the base.  Seeing a regular hexagon as six congruent 

equilateral triangles may lead students to question if a rule for determining the area of a 

regular hexagon is possible if only the side length is known.  If students substitute a 

variable such as “x” in every place that they used a specific number for the side length, 

they should be able to determine a formula for the area of a regular hexagon.  

Constructing new meaning by building on previous knowledge and experience can occur 

through real-life situational problems.            

One of the main advantages of having students solve problems in real-life is the 

multiple ways in which students can solve the problems. Take for example, the question 

asking students to calculate the height of the flagpole in bananas.  In order to solve the 

question, students could use proportions with shadow lengths, trigonometric ratios 

measuring the angle of elevation with a straw and a protractor, a bowl of water in which 

to see the top of the flagpole and similar triangles, scale by taking a picture with the 

banana and flagpole and then printing the picture and measuring it, or even throwing the 

banana vertically in the air to the height of the pole and timing its descent (this one gets a 

little messy).  Students can become the experts in developing methods for determining 

the height of the flagpole.  To be effective in sharing their idea, each group will need to 

communicate clearly and logically.  As students become the judges of effective 

communication they can become more aware for co-constructing criteria in assessment 

for learning practices.  In this way, students can take more responsibility in evaluating 

their own solutions, not relying solely on the teacher.      

Communication is also necessary for students within each group.  For example, part 

of one of the questions asks students to count the number of seats in a large auditorium.  
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As a group, students need to work together and communicate a systematic method of 

counting.  Some aspect of recording and representing the groups of data is essential to 

ensure the precise number.  Working together is not enforced in this situation, but 

students will quickly realize the need for everyone’s participation and an effective means 

of organizing information and intercommunication.  

Math trail activities can also help students identify connections outside of 

mathematics.  One of the questions asks students to consider a tiling pattern on the floor 

and calculate the entire area of the geometric design.  The geometric design forms an 

airplane with each portion of shaded tile either a sixteenth, eighth, quarter, half or whole 

portion of one tile.  In summing the shaded portions of tiles, students will most likely 

observe the scale factor of the shaded tiles.  They will be able to quantify the area 

mathematically, yet still be able to see the art of the design as a whole.  The mathematics 

of the tiling contributes to the concept of the design.   

Two other tasks also draw on connections between art and mathematics.  In the 

geology building at the University of Sakatchewan, there is a planter that surrounds a 

replicated triceratops fossil.  At first glance, the planter appears to be designed without 

patterning.     

“Diagram of triceratops planter” 

 

 

    

 
However, once students begin to measure the perimeter by measuring each side length, 

multiples of one number continually arises.  Each side is a multiple of 5 bananas or 45 
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inches in length.  Even though initially the polygon does not appear to have any order in 

its design, measuring the length of each side demonstrates that even apparent abstract art 

can have connections to mathematics.   

 A second task that connects to art is finding the area of multiple circles painted on 

a wall inside one of the university’s buildings.  As students are measuring the radii of 

various circles, they may notice that groups of circles are proportional to one another.  

Rather than repeating the process of measuring the radius twenty-three times, they may 

begin to infer which circles have equal radii.  They may even notice how the sizes of the 

circles vary in relation to the arrangement and positions of the circles within the painting.   

What may appear as abstract art at first glance can reveal mathematic properties in visual 

aesthetics.  

 In addition to connecting to other subject areas, these tasks can also develop 

students’ reasoning abilities.  One task asks students to calculate the surface area of 

slanted faces around a monument.  Students could calculate the surface area by 

measuring each of the eight trapezoidal faces but this is not necessary.  Some students 

may notice that the monument is an octagon with vertical and horizontal symmetry.  

“Diagram of Octagonal Monument” 

 

 

 

Based on this observation they may wonder if they only need to find the surface area of 

four of the faces and then multiply the value by two.  They may test their conjecture by 

measuring a fifth trapezoidal face and verifying that the measurements are congruent to 
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its opposite corresponding face.  By actually measuring distances students will most 

likely see the prevalence of mathematical concepts in everyday objects. 

 A second task in which students must reason is in estimating the flying distance 

between Vancouver, B.C. and Halifax, Nova Scotia in bananas.  Looking at the banana in 

their hand and then trying to estimate such a large distance is a difficult task. However, if 

students can reason through steps and draw on previous learning it may not be so 

difficult.  Beginning with the concrete students may try and relate the distance of the 

banana to a quantifiable distance such as a meter or a foot.   They could then determine 

the approximate number of bananas in a kilometer or a mile.  It is possible that students 

may be able to find the driving distance or flying distance on the Internet or by using the 

scale on a map of Canada.  If not, they would have to make a reasonable estimate for the 

distance.  They could use reference distances such as how long it takes to travel from one 

city to another, such as Calgary to Winnipeg and speculate an average speed in order to 

determine the distance.  By estimating how many times that distance is repeated across 

Canada, they could give an overall approximation of the amount of kilometers or miles 

across Canada.  By using bananas as the terms of measurement, students cannot hit 

numbers into a calculator or use an online converter; they need to reason through the 

solution. 

Math trail tasks are also beneficial in presenting students with non-traditional 

problems.  For example, one of the tasks requires students to calculate the distance from a 

third-floor railing to the floor.  If this question were in a textbook, there would not be 

much flexibility in making this a challenging task.  Students would have to add or 

subtract segmented distances in order to find the answer.  However, in a real-life context 
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the task becomes much richer.  There are no given dimensions or lesson titles as hints for 

students.  The students must be creative and work together in order to solve the problem.  

For instance, one time a group of students tied their lanyards together, lowered the string 

of lanyards down from the balcony to the floor and then measured the length of the 

lanyards in bananas.  A textbook question does not encourage this type of problem 

solving. 

Another example of a non-traditional task is to find the volume of the banana.  In 

classrooms students may be asked to find the volume of defined objects such as 

rectangular or cylindrical prisms or spheres of right cones, but are rarely asked to find the 

volume of irregular objects.  Yet, irregular objects are common in everyday life.  At first, 

students may be perplexed as to what to do, as they probably not aware of a formula for 

determining the volume of a banana.  Problems in context push students to think critically 

and creatively.  Students may try to relate the volume of the banana to something that 

they already know.  They may use a ruler to measure 1 cm increments on the banana and 

then cut the banana into 1 cm cubes. Partial cubes could be combined together in order to 

estimate the volume.  Or, in a connection to science, students could also submerge the 

banana in a graduated cylinder or beaker partially filled with water.  The displacement of 

the banana could be calculated from the increased volume of the water.  Problems that 

move beyond paper and pencil procedures to solving problems in situational contexts 

help develop mathematical thinking.  
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Conclusion 

 This project began as a quest for informed practice in mathematics education.  My 

research question asked, “What are the common elements between mathematics 

educational research, the NCTM, and the WNCP and how can they be applied in the 

secondary classroom?” In the articles that were reviewed and in the common frameworks 

of the NCTM and WNCP the five common themes of problem solving, constructing, 

reasoning, connecting, and communicating were identified.  These common themes were 

then applied to three topics in a curricular framework as illustrative examples of teaching 

and learning mathematics in this way.   

 Two extensions of the research question, beyond the scope of this project, may 

lead to further understanding in the teaching and learning of mathematics.  They are 

considerations for future research and consideration for educators in applying these 

concepts.  

Considerations for future research from this project are twofold.  First, do the five 

common themes identified from the reviewed literature and curricular frameworks extend 

to subject areas outside of mathematics?  Also, these five themes were applied to several 

curricular outcomes within the WNCP, a curricular framework that supports the 

development of students’ mathematical thinking through flexible achievement indicators 

and general outcomes.  How could these five themes be applied to mathematics curricular 

frameworks that do not support this philosophy but rather emphasis procedural skills?  

These two questions may lead to worthwhile research related to this topic.    

They are also considerations for educators in applying these concepts in their 

classrooms.  For some educators, the ideas presented in this project may be new and 
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unfamiliar.  Granted, educators need to start where they are situated.  Change is possible, 

but it also takes time.  At first, it will take more time in designing and planning tasks that 

are based in problem solving instead of isolated procedures.  It will take time to become 

accustomed to a class in which students noisily debate the validity of mathematical 

constructs. 

There will also be a shift.  There will be in shift from teacher led discussions and 

the teacher viewed as the authority of what is right and what is wrong to the students 

accepting that responsibility.  The teacher will shift from the transmitter of knowledge to 

a facilitator and learner with the students.  There will also be a shift in the view of 

solutions.  Solutions may not be able to be organized in a neat column on the back of a 

page.  Solutions will become multiple and the focus will be on process and reasoning in 

which students arrived at a solution rather than the solution itself.  These changes are 

necessary because the focus needs not to be on the teacher but on the student and the 

student’s development of mathematical thinking.  
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Appendices 

Appendix A - Magic Squares Lesson Plan 

 Magic squares can be found in the WNCP Curricular Framework for Grades 10-12 

in the Foundations 30 pathway.  Under the general outcome of logical reasoning, specific 

outcome number one states: 

 It is expected that students will analyze puzzles and games that involve numerical  

 and logical reasoning, using problem-solving strategies. (It is intended that this  

 outcome be integrated throughout the course by using games and puzzles such as  

 chess, Sudoku, Nim, logic puzzles, magic squares, Kakuro and cribbage.)  

 (WNCP, 2008, p. 69). 
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Magic Squares 
 
1. What is the sum of each row, column, and diagonal in Albrecht Dürer’s engraving in 
1514 entitled “Melencolia?”   
 

 
 
(Credit: Metropolitan Museum of Art, 2010) 
 
 
 
 
 
 
 
 
2. This sum is called the magic constant. Where else in the square is it possible to find 
this sum? Indicate the location(s) on the square. 
 
 
 
 
3. Some people suggest that Dürer left his signature within the engraving, where might 
this be? 
 
 
 

16 3 2 13 

5 10 11 8 

9 6 7 12 

4 15 14 1 
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4. The numbers 1-16 are written in sequential order in a 4 x 4 grid. What translations are 
necessary to obtain Dürer’s Square? 
  

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
5. How do you think the constant in question #1 is derived? 
 
 
 
6. If the numbers 1-9 are used in a 3 x 3 Magic Square, what is the constant?  
 
 
 
7. What is the constant for a 5 x 5 grid? a 6 x 6 grid? a 7 x 7 grid? a N x N grid? 
 
 
8. Given the constant for a 3 x 3 grid try and find all the possible unique Magic Squares 
using the numbers 1-9. It may be helpful to start with the middle position. How many 
unique squares are there?  
 
 
 
 
 
 
 
 
 
 
 
 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

16 3 2 13 

5 10 11 8 

9 6 7 12 

4 15 14 1 
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9. a) Try generating your own magic square. One possible way to make magic squares 
with an odd number of rows and columns is seen below. What pattern is followed?  
 
 
 

8 1 6 

3 5 7 

4 9 2 

 
 
 
 
 
 
 
b) Test your pattern by creating a 7 x 7 magic square in the space below.  
 
 
       

       

       

       

       

       

       

 
 
 
 
 
 
 
 
 

17 24 1 8 15 

23 5 7 14 16 

4 6 13 20 22 

10 12 19 21 3 

11 18 25 2 9 
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c) What variants of this pattern can you perform and still create a magic square? Why 
does this work? Here are some blank squares for you to test your ideas. 
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10. a) Think of a 9 x 9 magic square as a normal Sudoku grid. Vary your pattern by 
considering each 3 x 3 square separately. When you have completed the first square in 
the top middle with the digits 1-9, continue using your pattern to determine the next 3 x 3 
block and using the numbers 10-18. Continue in a similar manner through 73-81.  
 
 

         

         

         

         

         

         

         

         

         

 
 
 
b) What patterns do you notice? 
 
 
 
c) Why does this arrangement work? 
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Appendix B - Sine and Cosine Law Lesson Plan 

This outcome is found in all three of the pathways described in the WNCP.  In 

Foundations 20, outcome three in geometry expects students will “solve problems that 

involve the cosine law and the sine law, including the ambiguous case.” (WNCP, 2008, p. 

59).  Also, under trigonometry in Pre-calculus 29, outcome number three states that “it is 

expected students will solve problems that involve the cosine law and the sine law, 

including the ambiguous case.” (WNCP, 2008, p. 81)  Further, in Apprentice and 

Workplace Mathematics 30, under geometry, outcome number one in geometry expects 

students will “solve problems by using the sine law and cosine law, excluding the 

ambiguous case.”  (WNCP, 2008, p. 40). 

In Foundations 20 and Pre-calculus 20 the achievement indicators show that it is 

expected that students not only solve problems using the sine and cosine law, but that 

they are also able to generate the sine law and cosine law (WNCP, 2008).  Accordingly, a 

problem is presented at the beginning of the lesson that students will not be able to solve 

using trigonometric ratios in a right-angle triangle.  The lesson enables students to derive 

the law of sines based on their previous knowledge of trigonometric ratios. The students 

then use this law to solve the original problem.  A similar lesson framework with a 

different problem is also presented for the law of cosines.  These lessons have been 

adapted from several sources including the Math Forum (Lelkes, 1997), NCTM’s 

Illuminations resource (Godine, 2010), and Regents Prep (Roberts, 2010). 

 
 
 
 
 
 



 50 

Can you canoe? 
 
Two friends, Tamara and Dominique, at Diefenbaker Lake in Saskatchewan are wanting 
to canoe across the lake to a sandy beach on the other side. A road along the lake 
separates their two cabins. They used the odometer on their parent’s mini-van to find the 
distance as 1.3 km.  They also measured the angles from each cabin to each end of the 
beach using binoculars and a protractor.  The angle at Tamara’s cabin between the west 
end of the beach and Dominique’s cabin is 84° while the angle at Dominique’s cabin 
between the east end of the beach and Tamara’s cabin is 86°.  The other two smaller 
angles are shown on the diagram. Which cabin should they depart from if they want to 
travel the most direct route from one of the cabins to the beach?  Express your answer to 
the nearest ten of a kilometer. The diagram is not to scale. 
 
 
                                   Beach 
                      
 
 
 
 
 
 
             
 
 
 
 
                   
              Tamara’s          112°     

Cabin      
              70°                       97° 

                          1.8 km                         
                Dominique’s Cabin   
                 58°   
 
 
1. List the four possible routes that the girls could take as dictated by the question. 
  
2. Looking at the value given for the angles which two routes can be immediately 
excluded, as they will be longer than the other two? 
 
3. What are some possible ways of determining the distance from each cabin to the 
beach? 
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4. It is possible to find missing lengths and angles of oblique (non-right) triangles. Follow 
the process on a generic triangle ABC to derive the method. Begin by drawing the 
altitude from A. Label it h or some other letter. 
 
                 A 
 
                   c 
 
 
         B      b                       
 
 
 
   a 
 
              C 
   
5. What do you notice about the two new triangles that are formed from drawing the 
altitude at A?  
 
6. How can the sides of each smaller triangle be related together? Write them as two 
separate formulas using the sine of < B and the sine of < C. 
 
7. Now try and combine the two formulas into one formula. Look for the same value in 
each equation in order to make the equations equal to each other.  
 
8.  We are almost finished in deriving the formula to solve the beach question. Using the 
equation from question #7, divide both sides by b⋅c. 
 
9. Use a similar method to find the relationship between angles a and b and side lengths a 
and b. Begin by drawing the altitude from angle C and determining relationships for sin 
A and sin B. 
 
10. How can the relationships from question #8 and #9 be combined together? Combine 
them to make one relationship between the three sides and three angles of an oblique 
triangle. 
 
11. This relationship between the three side lengths and angles of an oblique triangle is 
called the law of sines.  Use these ratios to determine the answer to the original canoe 
question.  
 
12. What is the minimum information needed in regard to side length and angles in order 
to use the law of sines? 
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13. When given a combination of three known side lengths or angles, when does the law 
of sines not guarantee a unique triangle?  
 
14. Using your answer from the previous question, give two side lengths and one angle 
for general triangle ABC (not to scale) that has: 
 
                A  a) one unique solution 
 
                   c   b) two possible solutions 
 
       c) no solutions 
         B      b                       
 
 
 
   a 
 
              C 
 
 
Tiger and Mike Go Golfing 
 
Two golfers, Tiger and Mike, are playing a skins game in which points are awarded for 
the tee off shot that lands closest to the pin.  Tiger’s shot lands in the middle of the 
fairway, 2 yards behind a 150 yards to the pin marker while Mike’s shot lands ahead of 
the 150 yard marker but in the rough, to the left side of the fairway. The golfers step off 
the distance between their two golf balls as 21 yards but obviously do not want to walk 
all the way to the pin to determine who is closest. If the angle at Tiger’s ball between the 
pin and the Mike’s ball is measured as 84 degrees, which golfer is closer to the hole and 
by how much?  Calculate your answer to the nearest hundredth of a yard. The diagram is 
not to scale. 
 
 
Pin 
 

    a     150 yard marker 
    152 yards           C  (Tiger’s ball) 
B                84o 

      21 yards 
          c      b  
               
        A  (Mike’s ball) 
 
1. What are some possible ways to solve for side length c?  
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2. It is possible to find missing lengths and angles of oblique (non-right) triangles. Follow 
the process on a generic triangle ABC to derive the method. Begin by drawing the 
altitude from A. Label it h or some other letter. 
 
                 A 
 
                   c 
 
 
         B      b                       
 
 
 
   a 
 
              C 
 
3. What do you notice about the two new triangles that are formed from drawing the 
altitude at A? Label the bases of both smaller triangles in terms of a and another variable 
such as x.  
 
4. How can the sides of each smaller triangle be related together? Write them as two 
separate formulas. 
 
5. Now try and combine the two formulas into one formula. Look for the same value in 
each equation in order to make the equations equal to each other.  
 
6. Next we want to solve for a side length variable such as c2. What steps must we do in 
order to solve for c2 ? Follow these steps now. 
 
7. Last we would like to substitute the variable x for a term relating a side length (a, b, or 
c) with an angle (A, B, or C). How might we be able to substitute side length x with a 
relationship of side length b and angle C?  Solve this relationship for x and substitute the 
value for x in the equation from question #6.  
 
8. We now have a formula called the law of cosines that allows us to solve for side 
lengths and angles of oblique triangles.  Use this formula to solve the original question of 
the two golfers and the closest ball to the pin.  
 
9. What would be the side length of c if the angle at Tiger’s ball was 90° instead of 84°? 
Use the law of cosines to determine the distance.  What do you notice? 
 
10. What is the minimum information needed in regard to side length and angles in order 
to use the law of cosines? 
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11. Generate the law of cosines for side lengths a and b in a similar manner as you did for 
side length c. 
 
 
12. If the original question had given us three side lengths such as 152, 21 and 153, how 
could we use the law of cosines to determine the missing angles? Use the law of cosines 
to determine the angle at Mike’s ball as formed between the hole and Tiger’s ball given 
these three lengths. 
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Appendix C - Measurement Lesson Plan  

 Linear, surface area, and volume measurement outcomes are included in two of the 

WNCP pathways.  In Apprentice and Workplace Mathematics 20, under measurement, 

outcomes one and two state: 

Solve problems that involve SI and imperial units in surface area 

measurements and verify the solutions” and “solve problems that involve  

 SI and imperial units in volume and capacity measurements.  

 (WNCP, 2008, p. 30)  

Also, in Foundations 10, three of the outcomes under measurement are applicable.  It is 

expected that students will: 

• Solve problems that involve linear measurement, using SI and imperial  

 unit of measure, estimation strategies, [and] measurement strategies.  

• Solve problems, using SI and imperial units, that involve the surface  

 area and volume of 3-D objects, including right cones, right cylinders,  

 right prisms, right pyramids, [and] spheres.  

• Develop and apply the primary trigonometric ratios (sine, cosine,  

 tangent) to  solve problems that involve right triangles.  

 (WNCP, 2008, pp. 47-48). 

 One possible way to meet these outcomes in a problem-solving context is to have 

students participate in a math trail activity.  In the absence of categorized practice 

questions, students are forced to think critically about how to solve questions.  As for the 

context, any school or building will have plenty of examples of objects or areas for 

students to measure.  The following examples are taken from math trails that I developed 

for the University of Saskatchewan and the University of Regina.  For measuring tools, I 

give a banana to each group of students because bananas do not have incremental marks 

and it requires students to convert between bananas in linear, squared, and cubed units. 
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Bananas Anyone? 
 
-         Your group will be in competition with other groups to get as many answers as 

possible within the given time constraints. 
-         You are allowed to tackle the questions in any order.  As a group you must stay 

together with your leader. 
-         Good luck and be creative.  All measurements must be in banana units and must be 

accurate within + 15%. 
-         In order to receive full points, show your work including formulas where 

appropriate.  Meet back here at ________. 
 
Sample questions from a Banana Challenge at the University of Saskatchewan 

  
________  /5     Length of the hall from doorway to doorway in the sky walk between the  

  Arts Building and Thorvaldson. 
 

________  /10   Volume of north elevator in the Agriculture Building. 
  

________  /10   The amount of bananas in the flying distance between Halifax and  
  Vancouver. Express your answer in banana scientific notation.  

  
________  /10   The area of the 23 artistic semi-circles, with a diameter greater than ½  

  your banana, on the wall in Thorvaldson near Room 105. 
 
________ /10    The distance from the top of the railing on the second floor of the  

  Agriculture Building to the floor on the main level.  No climbing or  
  hanging over the railing. 

  
________ /10    In the Ag Building, near Room 2E17, there is a poster entitled “Food is 

  Important.” There is a picture of a woman from Thailand wearing a red  
  shirt in a boat.  Assuming the banana second from her right is the same  
  length as your banana, calculate the length of her boat from tip to tip in your  
  bananas. 

 
________ /15    The volume of the hexagonal stone base, encasing quartz and crystals  

  in the Geology Building. 
 
________ /15     East of the north entrance in the Agriculture Building there is a planter  

   inscribed “Donors whose outstanding support led the way in providing to a   
   thriving agriculture industry” Find the total surface area of the inscribed,  
   slanted faces around the planter. 

  
________  /15    The area of the triceratops planter in the Geology/Biology Building. You  

   are not allowed to climb or measure across the planter. Think outside the  
   planter. 
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Sample Questions from a Banana Challenge at the University of Regina  
 

________  /5    If each horizontal wooden beam in the ceiling of the Education Pit equals  
 one banana, how bananas are there? 

  
________  /5     The diameter of the big blue and yellow circle around a flower and a bee  

  (north of the Education Building). 
 
________  /10    If there is one banana on each red seat in the Education Auditorium,  

   including the upper wings, how many bananas are there?  
  
________  /10    The surface area of the Coke cooler across from Security in College West.  
  
________  /10    The volume of your banana. 
  
________ /10     The circumference of the Earth in bananas.  
  
_________/15    By the Theatre Department (Riddell Center) is a blue banana with wings.  

   If one whole tile equals 1 banana squared, what is the exact area of this  
   tiled figure? 

 
________ /15     The volume of the whole cylindrical phone booth between the Riddell  

   Center and the Education Building (in cubic bananas). 
  
_________/15     The length from the 3rd floor railing to the bottom of the Admin- 

    humanities Pit.  
 
________ /15     The height of the flag pole outside of the Classroom Building. 
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Appendix D - Solutions 

Magic squares (solutions) 
 
1. The constant can be found by summing a row, column or diagonal. In this case, it is 
34.  
 
2. The red squares and the blue square also add up to 34. Additionally, the two purple 
lines have a sum of 34 as do the two yellow lines. 
 
 

 
 
 
 
  
 
 
 
 
 
 

 
3. The year the engraving made was 1514 as can be seen in the bottom middle columns. 
Further, some speculate that the 1 and the 4 in the bottom row correspond to Albert 
Dürer’s initials in the German alphabet as D = 4 and A = 1.  
 
4. If row 1, column 1 is (1,1) respectively then 
(1,1) ⇔ (4,4); (1,4) ⇔(4,1); (1,2) ⇔(1,3); (4,2) ⇔(4,3); (2,2) ⇔(3,2); (2,3) ⇔(3,3)  
 

  
 
 
 
 
 
 
 
 
 
 
 

This general pattern will work for any magic square that is a multiple of 4.  
 
5. One possible answer. Take the sum of the numbers from 1-16 and divide by 4 since 
each row, column or diagonal has 4 numbers.  

16 3 2 13 

5 10 11 8 

9 6 7 12 

4 15 14 1 

16 3 2 13 

5 10 11 8 

9 6 7 12 

4 15 14 1 
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(1 + 2 + 3 + 4 + …16) ÷ 4 = 34 
 
or simply 
 

[16(16 + 1)] ÷ 4 = 34 
         2 
 
6. For the numbers 1-9 in a 3 x 3 Magic Square 
 

[9(9 + 1)] ÷ 3 = 15 
       2 
 
7. For a 5 x 5 grid 

[25(25 + 1)] ÷ 5 = 65 
         2 
 
For a 6 x 6 grid 

[64(64 + 1)] ÷ 6 = 111 
         2 
 
For a 7 x 7 grid 

[49(49 + 1)] ÷ 7 = 175 
         2 
 
For a N x N grid 

[n2(n2 + 1)] ÷ n  
          2 
 
8. There is one unique square for a 3 x 3 square. Rotations and reflections are generally 
not counted as unique solutions (although this could be an interesting discussion for 
students). 
 

4 9 2 

3 5 7 

8 1 6 

  
 
9. The pattern for a magic square with an odd number of squares in each row, column or 
diagonal is to start with 1 in the top middle position and then place the next number 
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diagonally up and to the right, allowing this pattern to continue wrapping around the 
edges of the square. If there already is a number in this square, move directly down one 
square and continue the previous pattern until all the squares have been filled.  
 

 
8 

1 6 

 3 5 7 

4 9 2 

 
 
 
 
 
b) Following the same pattern as in part a) the 7 x 7 square would look like 
 
 

30 39 48 1 10 19 28 

38 47 7 9 18 27 29 

46 6 8 17 26 35 37 

5 14 16 25 34 36 45 

13 15 24 33 42 44 4 

21 23 32 41 43 3 12 

22 31 40 49 2 11 20 

 
9. c) Answers may vary. 
Some answers may include begin one square to the right of the middle square (middle 
column and middle row). Use the same diagonally up and to the right rule but instead of 
moving down one, move two spaces to the right when a move is not possible. 
 
Another possible answer is to begin in the middle column, one row above the center 
square. Use a knight’s move of two down, one to the right when possible. When it is not 
possible, move two up. 
 
The complete proof of all possible starting locations and moves is well beyond the scope 
of high school mathematics but can be found at 

17 24 1 8 15 

23 5 7 14 16 

4 6 13 20 22 

10 12 19 21 3 

11 18 25 2 9 
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http://www.xs4all.nl/~thospel/siamese.html (Hospel, 2002). A basic explanation is that 
the center square’s value is the magic constant divided by the number of squares in a row, 
column, or diagonal. Pairs of numbers having an equal distance from the center also have 
the same average value. For example, in a 5 x 5 square derived by this method, 13 is the 
value of the center square and each same-coloured pair has 13 as its average value. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
10. a) 
 

71 64 69 8 1 6 53 46 51 

66 68 70 3 5 7 48 50 52 

67 72 65 4 9 2 49 54 47 

26 19 24 44 37 42 62 55 60 

21 23 25 39 41 43 57 59 61 

22 27 20 40 45 38 58 63 56 

35 28 33 80 73 78 17 10 15 

30 32 34 75 77 79 12 14 16 

31 36 29 76 81 74 13 18 11 

 
b) Answers may vary but may include: this pattern generates a Magic Square as well or 
each 3 x 3 square is similar to the first except that 9 has been added to each value. 
 
c) By completing a 3 x 3 square and then following the same diagonally up and right or 
down pattern, pairs that are equidistant from the center of 41 have an average of 41.  

17 24 1 8 15 

23 5 7 14 16 

4 6 13 20 22 

10 12 19 21 3 

11 18 25 2 9 
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Can you canoe? (solutions) 
 
 
 
                                     Beach 
                      
 
 
 
 
 
 
             
 
 
 
 
                   
              Tamara’s          112°     

Cabin      
              70°                       97° 

                          1.8 km                         
                Dominique’s Cabin  
                 58°   
 
 
1. The four possible routes are: 
a) Tamara’s cabin to the west beach 
b) Tamara’s cabin to the east beach 
c) Dominique’s cabin to the west beach 
d) Dominique’s cabin to the east beach 
 
2. A triangle on a two-dimensional surface can only have one angle greater than 90°. The 
side opposite this angle will always be the longest side as sides and opposite angles in a 
triangle are proportional. Accordingly, we can eliminate the distance from Dominique’s 
cabin to the west end of the beach and the distance from Tamara’s cabin to the east side 
of the beach as they are both opposite the largest angle of each triangle.  
 
3. One could use trigonometric ratios if one of the angles of a formed triangle was 90°. 
One could also construct a diagram to scale using the two angles and side length but it 
would be difficult to measure the shortest distance to the beach as the beach curves.  
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4.  
   
             A 
 
 
      c 
 
     h 
B           b  
 
           
          a  
 
                   C 
 
 
5. Each triangle is a right-angle triangle as the altitude is perpendicular to the base.  
 
6. As the triangles contain a right angle the sides can be related by the trigonometric ratio 
of sin θ = opp  we then have sin B = h  and sin C = h 
    hyp              c             b 
 
7. Since both equations contain h we can solve each for h. We then set the two equations 
equal to each other making one equation based on the transitive property. 
  
c ⋅ sin B =  h  and  b ⋅ sin C = h  becomes   c ⋅ sin B = b ⋅ sin C 
 
8. sin B = sin C 
    b           c 
 
9.                              A 
 
                   c 
 
 
         B  h    b                       
 
 
 
   a 
 
              C 
 
sin A = h  and sin B = h 
 b  a 
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Once again, we solve both equations for h and set them equal to each other. 
 
b ⋅ sin A =  h  and  a ⋅ sin B = h  becomes   b ⋅ sin A = a ⋅ sin B 
 
Dividing both sides by a ⋅ b  
 
sin A = sin B 
    a           b 
 
10. Using the transitive property as both sin A and sin C equal sin B it follows that 
             a             c         b 
sin A = sin B = sin C 
    a           b      c 
 
11. In order for students to solve the original question they must find the third angle of 
each triangle by subtracting the sum of the other two angles by 180.  
 
Tamara’s cabin to the east shore 
The third angle is 13° as 180 – (70 + 97) = 13.  Using the law of sines we have 
 
Sin 70 = sin 13    
    a       1.8 
 
Solving for a we have 1.8 (sin 70) = 7.5 km 
          sin 13 
 
Dominique’s cabin to the west shore 
The third angle is 11° as 180 – (58 + 112) = 10.  Using the law of sines we have 
 
Sin 58 = sin 10    
    b       1.8 
 
Solving for b we have 1.8 (sin 58) = 8.8 km 
          sin 10 
 
The girls should set out from Dominique’s cabin and travel to the east shore, as it is the 
most direct distance.  
 
 
 
12. In order to use the law of sines we need to know the measure of two angles and one 
side or two sides and one angle.  Two angles and one side can be represented as Angle-
Angle-Side (AAS) or Angle-Side-Angle (ASA). This determines a unique triangle 
because of congruency.  Two given sides and one angle (SSA) do not necessarily 
determine a unique triangle. Three scenarios are possible in which there may be one 
unique solution, two possible solutions or no solutions. 
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13. In the case of two known side lengths and one known non-included angle the law of 
sines does not guarantee a unique triangle because SSA cannot be used to prove 
congruency. 
 
14. Answers will vary. A possible solution for each question is provided. 
 

a) One unique solution: b = 3, c= 3.2 and < C = 28°. This gives us 26.1° and 153.9° 
as possible solutions but 153.9 + 28 > 180 so 153.9° is not possible. 
 

b) Two possible solutions: b = 7, c = 4 and <C = 34°. <B can either be 78.1° or 
101.9° as 78.1 + 34 < 180 as is 101.9 + 34 < 180. 

 
c) No solutions: b = 4.2, c = 7.6 and <B = 36°.  This would give us sin C = 1.06, 

which is impossible.   
 

Tiger and Mike go golfing (solutions) 
 
1. If the triangle was a right angle we could use the Pythagorean Theorem to determine 
the missing side length as we know the lengths of the two other sides.  One could use the 
information given and try and construct a diagram to scale and then measure the missing 
side. 
 
2.        
     A  
 
      c 
 
     h 
B           b  
 
           a - x 
 
   x 
       a                 C                     
 
 
3. Each triangle is a right-angle triangle as the altitude is perpendicular to the base. Side a 
can be labeled as a - x and a as x represents the unknown distance of the one base and the 
other base can be represented as the total side length (a) minus the unknown distance (x). 
 
4. As the triangles contain a right angle the sides can be related by the Pythagorean 
Theorem as a2 + b2 = c2 or in this case (a – x)2 + h2 = c2 and x2 + h2 = b2. 
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5. Since both equations contain h2 we can solve each for h2. We then set the two 
equations equal to each other making one equation based on the transitive property. 
 
h2 = c2 – (a – x)2  and h2 = b2 – x2 becomes c2 – (a – x)2 = b2 – x2 
 
 
 
6. We need to expand the brackets and isolate the variable of c2. 
 
c2 – (a – x)2 = b2 – x2 
c2 = b2 – x2 + (a – x)2 
c2 = b2 – x2 + a2 – 2ax + x2 
c2 = a2 + b2 – 2ax 
 
7. As the triangle with side lengths x, b, and h contains a right angle, we can use the 
cosine trigonometric ratio. As cos θ =   adj      we have cos C =   x 
         hyp                      b 
 
By solving for x we obtain  x = b ⋅ cos C   
  
8. From the previous question we had 
c2 = a2 + b2 – 2ax  
c2 = a2 + b2 – 2a(b ⋅ cos C)  by substituting for x 
c2 = a2 + b2 – 2ab ⋅ cos C   the law of cosines 
 
c2 = a2 + b2 – 2ab ⋅ cos C 
c2 = 1522 + 212 – 2(152)(21)(cos 84o) 
c2 = 23545 – 667.3097095 
c2 = 22877.69029 
c   = 151.25 yards 
 
Since Mike’s ball is only 151.25 yards from the hole and Tiger’s ball is 152 yards to the 
hole, Mike’s ball is closer to the hole by 0.75 yards. 
 
9.  
c2 = a2 + b2 – 2ab ⋅ cos C 
c2 = 1522 + 212 – 2(152)(21)(cos 90o) 
c2 = 23545 – 0 
c = 153.44 yards 
 
As the value of cos 90o is 0, the second half of the equation is insignificant when using a 
right angle triangle. The Pythagorean theorem is a special case of the law of cosines.  
 
10. In order to use the law of cosines, we need to have two sides and an included angle or 
the length of all three sides. This ensures a unique solution as Side-Angle-Side (SAS) and 
Side-Side-Side (SSS) defines congruency in triangles. 
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11.  
a2 = b2 + c2 – 2bc ⋅ cos A 
b2 = a2 + c2 – 2ac ⋅ cos B 
 
 
 
12.  We can use the formula from #11 and solve for cos A. 
 
a2 = b2 + c2 – 2bc ⋅ cos A 
 
a2 – b2 – c2  = cos A 
     –  2bc 
 
1522 – 212 – 1532  = cos A 
    – 2(21)(153) 
 
   – 746  = cos A 
   – 6426 
 
0.116090881 ~ cos A 
 
83.33o ~ A 
 
The angle at Mike’s ball is approximately 83.3°. 
 

Bananas anyone? (solutions) 

Possible Methods for determining the height of the flagpole 

1. If the base of the flagpole is accessible to students, an easier and more familiar 
method may be used. Looking around the flagpole, students may notice a shadow 
or something. If the shadow is measurable on the ground, a simple proportion of a 
known height (e.g. student) and shadow can render the height of the flagpole. 
However, depending on weather conditions and the location of the flagpole this is 
not always possible. 
 
 
 
x 

  8.5                                       

                                                            
                    55 bananas             12.5 b 
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Accordingly,    
 
 x_  =   8.5 

55      12.5  
 
x = 37.4 bananas  

 

2. If the flagpole base is not accessible to students, the sine law can be used to 
calculate the height. Two separate angles of elevation can be used together with 
the distance between the two angles. If the angle of elevation is taken at eye level, 
this height needs to be added to the answer.   
 
For example, if the angle of elevation closer to the flagpole is 58° and the other 
angle of elevation is 37° with a distance of 26 bananas between the two angles, 
we then have: 
 

 
 
 
 
      x  y 
 
                         37° 
      26 b  
          58°          122° 
 

180 – 58 = 122      Supplementary angles 
 
180 – (37 + 122) = 21   Sum interior angles of a 2-D triangle is 180° 
 
sin 21 = sin 37   Law of sines 
   26       h 
 
y  ≈ 43.66   By solving for y 
 
sin 58 =    x   Sine ratio in right-angle triangle 
              43.66 
 
x  ≈ 37 bananas  Solving for x 

 
 

3. Another method similar to the first is for students to place a bowl of water or a 
mirror on the ground and back away until the tip of flagpole becomes visible in 
the reflection. Once again, similar triangles using the distance from the pole to the 
reflective surface and the distance of the person to the reflective surface 
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proportionate to the height of the person’s eyes and the unknown height of the 
flag pole. 
 
 

4. Using a protractor, a student can also determine the angle of elevation between his 
or her eyes and the top of the flagpole. The distance between the base of the 
flagpole and the student can be used with the angle of elevation in a sine 
relationship.  Added together with the height of the student’s visual will give the 
overall height. 

 
 

5. A student can also take a picture of the entire flagpole with another student 
holding the banana along the same plane in the picture. The scale factor of the 
banana to the flagpole can be found by measuring the real banana and the banana 
in the picture. 

 
 

6. One other way that is not very accurate, but can be amusing for students, as I have 
witnessed, is for the students to throw the banana vertically in the air. Two other 
students stand on either side of the flagpole a substantial distance away from the 
base, each with a stopwatch.  If the vertical throw is successful in reaching the top 
of the flagpole and not proceeding farther, the two students can start the 
stopwatches at the peak when the velocity is 0 m/s and time the distance until the 
banana hits the ground. The two times can then be averaged. Applying their 
knowledge of quadratics, students can then use h = - 4.9 t2 when h = height in 
meters and t = time in seconds which is derived from h = ½ g t2 where g = - 
9.8m/s2.  

 
For example, if the average time for the banana from the height of the flag pole to 
the ground is 1.3 seconds then: 
 
h = - 4.9 (1.3)2 
h = - 8.28 meters 
 
We can take the absolute value of this and convert it back to bananas. By 
measuring a banana from tip to tip, the result may be 9 inches or 23 cm. By 
dividing the height in meters by the length in meters of 1 banana, we have 36 
bananas as the height of the flagpole. Afterwards, the students can discuss 
possible errors with this method. Some examples may include not accounting for 
air resistance or possible horizontal velocity, the maximum height of the banana 
being greater than or less than the height of the flagpole, and human error in 
starting and stopping the stopwatch.  
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University of Saskatchewan Solutions 

These solutions are based upon a 9-inch or 23 cm banana measuring from tip to tip. 

1. 215 b  

2. 772 b3 

3. 1.93 x 107 b 

4. 24 b2 

5. 18 b 

6. 16 b 

7. 177 b3 

8. 60 b2 

9. 757 b2 

University of Regina Solutions 

These solutions are based upon an 8 ¼-inch or 21 cm banana measuring from tip to tip.  

1. 96 b 

2. 17 b 

3. 799 b 

4. 228 b2 

5. Answers will vary. 

6. 191,428,571 b 

7. 4.375 b 

8. 32 b3 

9. 50 b 

10. 130 b 
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